20 01 Recursive Subhomogeneous Algebras
نویسنده
چکیده
We introduce and characterize a particularly tractable class of unital type 1 C*-algebras with bounded dimension of irreducible representations. Algebras in this class are called recursive subhomogeneous algebras, and they have an inductive description (through iterated pullbacks) which allows one to carry over from algebras of the form C(X,Mn) many of the constructions relevant in the study of the stable rank and K-theory of simple direct limits of homogeneous C*-algebras. Our characterization implies in particular that if A is a separable C*-algebra whose irreducible representations all have dimension at most N <∞, and if for each n the space of n-dimensional irreducible representations has finite covering dimension, then A is a recursive subhomogeneous algebra. We demonstrate the good properties of this class by proving subprojection and cancellation theorems in it. Consequences for simple direct limits of recursive subhomogeneous algebras, with applications to the transformation group C*-algebras of minimal homeomorphisms, will be given in a separate paper.
منابع مشابه
Decomposition rank of subhomogeneous C ∗ -algebras
We analyze the decomposition rank (a notion of covering dimension for nuclear C-algebras introduced by E. Kirchberg and the author) of subhomogeneous C-algebras. In particular we show that a subhomogeneous C-algebra has decomposition rank n if and only if it is recursive subhomogeneous of topological dimension n and that n is determined by the primitive ideal space. As an application, we use re...
متن کاملReal Rank and Property (sp) for Direct Limits of Recursive Subhomogeneous Algebras
Let A be a unital simple direct limit of recursive subhomogeneous algebras with no dimension growth. We give criteria which specify exactly when A has real rank zero, and exactly when A has the Property (SP): every nonzero hereditary subalgebra of A contains a nonzero projection. Specifically, A has real rank zero if and only if the image of K0(A) in Aff(T (A)) is dense, and A has the Property ...
متن کاملA Note on Subhomogeneous C-algebras
We show that finitely generated subhomogeneous C∗-algebras have finite decomposition rank. As a consequence, any separable ASH C∗-algebra can be written as an inductive limit of subhomogeneous C∗-algebras each of which has finite decomposition rank. It then follows from work of H. Lin and of the second named author that the class of simple unital ASH algebras which have real rank zero and absor...
متن کاملCancellation and Stable Rank for Direct Limits of Recursive Subhomogeneous Algebras
We prove the following results for a unital simple direct limit A of recursive subhomogeneous algebras with no dimension growth: (1) tsr(A) = 1. (2) The projections in M∞(A) satisfy cancellation: if e ⊕ q ∼ f ⊕ q, then e ∼ f . (3) A satisfies Blackadar’s Second Fundamental Comparability Question: if p, q ∈ M∞(A) are projections such that τ(p) < τ(q) for all normalized traces τ on A, then p q. (...
متن کاملDirect Limit Decomposition for C*-algebras of Minimal Diffeomorphisms
This article outlines the proof that the crossed product C(Z,M, h) of a compact smooth manifold M by a minimal diffeomorphism h : M → M is isomorphic to a direct limit of subhomogeneous C*-algebras belonging to a tractable class. This result is motivated by the Elliott classification program for simple nuclear C*-algebras [9], and the observation that the known classification theorems in the st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001